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REVIEW ARTICLE

Psychedelics as anti-inflammatory agents

Thomas W. Flanagan and Charles D. Nichols

Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans,
LA, USA

ABSTRACT
Serotonin (5-hydroxytryptamine, 5-HT)2A receptor agonists have recently emerged as promising
new treatment options for a variety of disorders. The recent success of these agonists, also
known as psychedelics, like psilocybin for the treatment of anxiety, depression, obsessive-
compulsive disorder (OCD), and addiction, has ushered in a renaissance in the way these
compounds are perceived in the medical community and populace at large. One emerging
therapeutic area that holds significant promise is their use as anti-inflammatory agents.
Activation of 5-HT2A receptors produces potent anti-inflammatory effects in animal models of
human inflammatory disorders at sub-behavioural levels. This review discusses the role of the
5-HT2A receptor in the inflammatory response, as well as highlight studies using the 5-HT2A
agonist (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] to treat inflammation in cellular and
animal models. It also examines potential mechanisms by which 5-HT2A agonists produce their
therapeutic effects. Overall, psychedelics regulate inflammatory pathways via novel mechanisms,
and may represent a new and exciting treatment strategy for several inflammatory disorders.
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Introduction

The term ‘psychedelic’ was coined in 1957 by
Humphrey Osmond for a class of drug that is able to
produce profound changes in thought, mood, and
perception (Osmond, 1957). This term is now coming
to prominence again in the scientific realm to distin-
guish a specific class of hallucinogenic drugs that
exert their primary effects through activation of sero-
tonin 5-HT2A receptors from those that utilize differ-
ent primary molecular mechanisms for their effects
(Nichols, 2016). Results of recent clinical studies using
known psychedelic compounds have contributed to a
greater appreciation of their potential as therapeutic
medications. In two separate human clinical trials per-
formed at Johns Hopkins University and New York
University, the effects of psychedelic-assisted psycho-
therapy in patients suffering from cancer-related psy-
chosocial distress (CRPD) was examined (Griffiths
et al., 2016; Ross et al., 2016). Each placebo-controlled
double-blind study found that the 5-HT2A receptor
agonist psilocybin significantly improves well-being
and life satisfaction, while concurrently reducing anx-
iety and depression in patients with a life-threatening
cancer diagnosis. This effect can persist for at least 6
months after a single administration of drug. At about

the same time another group, at Imperial College in
London, found that psilocybin administration has sig-
nificant anti-depressant effects. This study, however,
was smaller and open label, with no placebo-control
group (Carhart-Harris et al., 2016a, 2017a). The
Imperial group further utilized imaging techniques
(fMRI) to elucidate the effects of psilocybin and LSD
on brain network connectivity (Carhart-Harris et al.,
2012, 2016b). They found that these drugs alter con-
nectivity between brain regions, especially with regard
to the Default Mode Network, to produce a transient
hyperconnected state (Carhart-Harris et al., 2017b).
As the drug’s effects wear off, the brain may reset
into a more normal pattern of connectivity that is less
associated with previous depressive states.

It is now recognized that inflammation plays a sig-
nificant role in the pathophysiology underlying psy-
chiatric disorders like depression and addiction
(Furtado & Katzman, 2015; Hong, Kim, & Im, 2016;
Radtke, Chapman, Hall, & Syed, 2017). For example,
in animal models, injection of the pro-inflammatory
cytokines TNF-a and IL-1b into healthy subjects
induces behaviours similar to social withdrawal
(Najjar, Pearlman, Alper, Najjar, & Devinsky, 2013).
In another example, cytokine dysregulation is
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associated with memory impairment and neuropsychi-
atric disorders in the developing brain (Bilbo &
Schwarz, 2012). A meta-analyses of several studies
examining links between inflammation and response
to treatment for depression revealed that antidepres-
sants reduce IL-6 levels, regardless of treatment out-
come (Strawbridge et al., 2015). Further, they found
that elevated TNF-a is associated with treatment
resistance, and that treatment non-responders exhibit
higher baseline inflammation levels (Strawbridge
et al., 2015). Finally, MRI brain scans reveal that
inflammatory disease activity is associated with ele-
vated levels of anxiety and depression in multiple
sclerosis (MS) patients (Rossi et al., 2017). We have
previously speculated that the anti-inflammatory
effects of psychedelics mediated through serotonin 5-
HT2A receptor activation are a key component of not
only the anti-depressant effects of psilocybin, but also
contribute to its long-lasting effects after only a single
treatment (Kyzar, Nichols, Gainetdinov, Nichols, &
Kalueff, 2017). We hypothesize that psychedelics
acutely reset resting state functional connectivity
(RFSC) to healthy networks to rapidly alleviate
depression, then produce long-lasting effects by reduc-
ing neuroinflammation and preventing the brain from
returning to a persistent inflamed pathological state
and accompanying depression. Although serotonin
has long been known to be an immune modulator,
only relatively recently has activation of 5-HT2A

receptors with psychedelics been shown to have
potent anti-inflammatory effects. Here, we will discuss
serotonin, inflammation, 5-HT2A receptors, and how
psychedelics are acting as anti-inflammatory agents.

Serotonin and inflammation

Inflammation is broadly defined as an endogenous
repair/host defense mechanism that local and systemic
systems mount after a physical, chemical, thermal, or
biological insult to remove the offensive agent and
promote healing (Medzhitov, 2008; Naik & Wala,
2013). The process not only provides an acute defense
against harmful agents and infection, it is heavily
involved in the restoration of normal tissue function-
ing following a traumatic event (Barnes, 2011). The
immune response is comprised of innate and adaptive
components, which work together to combat noxious
stimuli at the point of infection and establish patho-
gen profiles to vigorously respond to future invasion
(Chaplin, 2010). The innate immune response (anti-
gen-independent) responds within minutes to hours
of a biological insult, recruiting immune cells to infec-
tion sites and promoting inflammation through

cytokine release. Cytokines are a large family of small
glycosylated proteins that are secreted by innate
immune cells, which have pleiotropic and diverse
functions in immunoregulation (Barnes, 2009; Naik &
Wala, 2013), including mediation of cell-to-cell signal-
ling, chemotaxis, and immunomodulation (Hamid &
Tulic, 2009). Key participants such as macrophages of
the innate system form the front line of defense, non-
discriminately recognizing, ingesting, and destroying
pathogens and scavenging debris (Janeway, Walport,
& Shlomchik, 2001). Dendritic cells possess phagocytic
properties, but also function as antigen-presenting
cells (APC) and act as a messenger between the innate
and adaptive pathways. The adaptive response is acti-
vated when the innate pathways are unable to effect-
ively eliminate the infectious agents. The adaptive
immune response’s primary function is to recognize
‘self’ antigens from ‘non-self’ antigens. Adaptive
immune cells like T-helper cells, which are activated
through the action of APCs, and lymphocytes recog-
nize foreign invaders and secrete antibodies, which
bind to ‘non-self’ antigens on pathogens and target
them for efficient destruction (Warrington, Watson,
Kim, & Antonetti, 2011). In the pathological state, the
immune system undergoes aberrant and uncontrol-
lable activation, ultimately inducing tissue destruction
rather than healing. Diseases such as asthma, allergic
rhinitis, and autoimmune diseases like Type 1 dia-
betes, rheumatoid arthritis (RA), and lupus all stem
from an overactive immune system (Shah, 2012).
Traditional treatments for an overactive immune sys-
tem or an exaggerated hypersensitivity reaction aim to
prevent or reduce the inflammatory response or sup-
press the immune system itself (Brower, 2004).

Serotonin is heavily involved in inflammation and
the inflammatory response (Shajib & Khan, 2015) and
is seen as primarily pro-inflammatory. For example, it
plays a key role in the generation of inflammation in
the gut (Ghia et al., 2009), and fluctuations in sero-
tonin levels are associated with damage to the liver
(Nocito et al., 2007) and pancreas (Sonda et al., 2013).
Accordingly, depletion of serotonin reduces inflamma-
tion in a number of different animal disease models
(Harbuz, Marti, Lightman, & Jessop, 1998; Harbuz
et al., 1996; Margolis et al., 2014; Pierce, Xie,
Peroutka, Green, & Levine, 1995). In blood samples
taken from healthy volunteers, elevated serotonin is
associated with higher levels of the proinflammatory
cytokines IL-6 and TNF-a, with diminished serotonin
levels associated with a lower expression of these
markers (Kubera, Maes, Kenis, Kim, & Lason, 2005).
In lipopolysaccharide (LPS)-primed monocytes,
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serotonin modulates cytokine and chemokine produc-
tion via activation of 5-HT3, 5-HT4, and 5-HT7 recep-
tors (D€urk et al., 2005). Serotonin can also activate
human monocytes and prevent their apoptosis (Soga,
Katoh, Inoue, & Kishimoto, 2007).

Serotonin and the 5-HT2A receptor

Serotonin produces its effects through interactions
with target receptor proteins. Of the 14 known mam-
malian serotonin receptors, 13 are G protein-coupled
receptors (GPCRs). GPCRs represent the largest fam-
ily of membrane proteins in the human genome, with
over 800 identified sequences (Fredriksson,
Lagerstrom, Lundin, & Schioth, 2003). GPCRs are
comprised of seven transmembrane-spanning alpha
helices joined by hydrophilic extracellular (N ter-
minus) and intracellular (C terminus) loops (Allen &
Roth, 2011; Palczewski et al., 2000). Upon agonist
binding, GPCRs undergo a conformational change
that ultimately triggers a biological response through
the activation of intracellular transducers, namely
coupled G proteins (Gi/Go, Gs, Gq) and b–arrestin
(Kenakin, 2010; Roth & Kroeze, 2015). Mutations in
GPCR gene sequences have been linked to several dis-
eases (McAlear, Kraft, & Gross, 2010; Moore et al.,
2016; Samson et al., 1996). Pharmacologically, GPCRs
are attractive drug targets. GPCRs possess roles in
nearly every biological process, and their location on
the cell surface is easily accessible (Mason, Bortolato,
Congreve, & Marshall, 2012). Approximately 30% of
all FDA-approved medications and �65% of prescrip-
tion medications are directed towards GPCRs (Drews,
2000; Wacker, Stevens, & Roth, 2017), which account
for �300 distinct molecular targets (Overington,
Al-Lazikani, & Hopkins, 2006).

Serotonin receptors are prevalent throughout the
body (McCorvy & Roth, 2015), and regulate a range of
diverse processes such as learning and memory
(Domeney et al., 1991), control of sleep/wake cycles
(Jouvet, Bobillier, Pujol, & Renault, 1967), thermoregu-
lation (Ray et al., 2011), appetite (Fuxe, Farnebo,
Hamberger, & Ogren, 1975), sexual behaviour in males
and females (Ahlenius, Larsson, & Svensson, 1980;
Meyerson & Lewander, 1970), pain (Sparkes &
Spencer, 1971), motor activity (Mabry & Campbell,
1973), and aspects of autonomic function like arterial
pressure and heart rate (Darmon, Awabdh, Emerit, &
Masson, 2015; Laguzzi, Reis, & Talman, 1984).
Accordingly, dysfunction in the serotoninergic system
is associated with several diseases and disorders, like
anxiety and depression (Thiebot, 1986), migraine head-
aches (Graham, 1964), schizophrenia (Meltzer, 1995),

emesis, obsessive-compulsive disorders, drug addiction,
and neurodegenerative disorders (Filip & Bader, 2009;
Giulietti et al., 2014; Politis & Loane, 2011).
Serotenergic dysregulation has also been implicated in
diseases in peripheral tissues, such as pulmonary
hypertension (Egermayer, Town, & Peacock, 1999),
cancer of the bile duct (Alpini et al., 2008), chronic
kidney failure (Steyn, Viljoen, Ubbink, van Rensburg,
& Reinach, 1992), and inflammatory bowel disease
(Khan, 2013).

The serotonin receptor family is the largest family
of GPCR neurotransmitter receptors (Nichols &
Nichols, 2008) and is comprised of seven different
receptor families (5-HT1-7). There are 14 distinct sub-
types in mammals characterized by amino acid
sequence, gene organization, and second messenger
coupling pathways (Hoyer et al., 1994). With the
exception of the 5-HT3 receptor, which is a ligand-
gated ion channel (Derkach, Surprenant, & North,
1989), all are GPCRs. In general, the 5-HT1 and 5-HT5

families couple with Gai/o to inhibit adenylate cyclase
(AC) activity, the 5-HT4, 5-HT6, and 5-HT7 families
couple with Gas to promote AC activation, and the
5-HT2 family couples with Gaq/11 to stimulate
phospholipase C (PLC) (Giulietti et al., 2014;
Raymond et al., 2001). The receptor sub-type most
closely linked to complex behaviours is the 5-HT2A

receptor, which is the most widely expressed mamma-
lian serotonin receptor throughout the brain and body
(McBride, Mann, McEwen, & Biegon, 1983;
Nagatomo, Rashid, Abul Muntasir, & Komiyama,
2004; Nichols, Johnson, & Nichols, 2017; Roth, Berry,
Kroeze, Willins, & Kristiansen, 1998; Sonier, Lavigne,
Arseneault, Ouellette, & Vaillancourt, 2005). Much
work has been done investigating the role of the Gaq-
coupled 5-HT2A receptors within the brain, as they
have been shown to participate in processes like cogni-
tion and memory (Williams, Rao, & Goldman-Rakic,
2002), and alterations in 5-HT2A receptor signalling
have been implicated in disorders like schizophrenia
(Vollenweider, Vollenweider-Scherpenhuyzen, Babler,
Vogel, & Hell, 1998; Williams et al., 2002). Within the
vasculature, 5-HT2A receptors are believed to modulate
aspects of vasoconstriction and cardiomyocyte prolifer-
ation (Brattelid et al., 2007; Cogolludo et al., 2006;
McKune & Watts, 2001; Nichols, 2009). The role of
the 5-HT2A receptor in other tissue like renal cells,
lymphocytes, fibroblasts, and hepatic cells is far less
defined, but it has been linked to cellular proliferation
and differentiation (G€o}oz, G€o}oz, Luttrell, & Raymond,
2006; Pellegrino & Bayer, 2002; Ruddell et al., 2006;
Welsh, Harnett, MacLean, & Peacock, 2004).
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5-HT2A receptors and the immune system

The 5-HT2A receptor has a wide distribution in per-
ipheral tissues. Significantly, the 5-HT2A receptor
mRNA has been detected in many immune related
tissues like the spleen, thymus, and circulating lym-
phocytes (Stefulj, Jernej, Cicin-Sain, Rinner, &
Schauenstein, 2000). 5-HT2A receptor protein is
expressed in components of both the innate and adap-
tive immune response, including human peripheral
blood mononuclear cells (PBMCs) (Cloez-Tayarani,
Petit-Bertron, Venters, & Cavaillon, 2003), eosinophils
(Kang et al., 2013), and T cells (Aune, Kelley, Ranges,
& Bombara, 1990; Herr, Bode, & Duerschmied, 2017;
Inoue et al., 2011). Early attempts to identify the role
of the 5-HT2A receptor in the immune response pro-
duced contradictory results. Arzt, Costas, Finkielman,
and Nahmod (1991) first showed that serotonin could
inhibit the synthesis of TNF-a in human monocytes,
an effect that was blocked by the 5-HT2 receptor
antagonist ketanserin. Later, Ito, Ikeda, Shimpo,
Yamamoto, and Shimada (2000) found that agonism
of 5-HT2 receptors in human vascular smooth muscle
cells elevated production of the inflammatory cytokine
IL-6, whereas antagonism resulted in diminished IL-6
production. Other groups found that one of the
antagonists from Ito et al.’s study, sarpogrelate,
reduced the expression of a number of pro-inflamma-
tory mediators (Akiyoshi et al., 2006; Marconi,
Darquenne, Boulmerka, Mosnier, & D’Alessio, 2003).
Blockade of the 5-HT2 receptor using ketanserin has
also been shown to modestly down-regulate inflam-
mation and eosinophil infiltration in a mouse model
of allergic asthma (De Bie et al., 1998). Unfortunately,
ketanserin has high affinity for blockade of the hista-
mine H1 receptor, which may have contributed to its
perceived anti-inflammatory effects in these assays.
An early experiment directly activating 5-HT2 recep-
tors with (R)-DOI found that the drug partially
blocked LPS and TNF-a stimulated nitrite accumula-
tion in rat C6 glioma cells (Miller & Gonzalez, 1998;
Miller, Mariano, & Cruz, 1997). Despite these contra-
dictory findings, with most studies supporting the role
of 5-HT2 receptor activation as proinflammatory,
these studies supported the notion that 5-HT2A recep-
tors are involved in the immune response. In CBA
mice (R)-DOI suppresses the immune response and
reduces spleen and peripheral blood CD8(þ) T cells
counts with cytotoxic/suppressor function (Davydova,
Cheido, Gevorgyan, & Idova, 2010). Ketanserin blocks
this effect and causes an increase in CD8(þ) T cell
counts in the spleen, which may indicate that 5-HT2

receptors function in immunosuppressive capacities.

Anti-inflammatory effects of 5-HT2A receptor
activation with psychedelics

While studying the effects of the psychedelic drug and
selective 5-HT2 receptor agonist (R)-2,4-dimethoxy-
4-iodoamphetamine [(R)-DOI] on the response to
TNF-a on rat aortic smooth muscle cells, Yu et al.
(2008) discovered that activation of 5-HT2A receptors
with psychedelics produces a potent anti-inflamma-
tory effect. Although multiple 5-HT2A agonists tested
were shown to have potent anti-inflammatory effects
(including lysergic acid diethylamide), (R)-DOI was
super potent to repress TNF-a induced inflammation
at levels in the low picomolar range (IC50 concentra-
tions 10–20 pM). (R)-DOI inhibited the TNF-a
induced expression of genes encoding intracellular
adhesion molecule-1 (ICAM-1), vascular cell adhesion
molecule-1 (VCAM-1), and inflammatory cytokine
IL-6. (R)-DOI also blocked activation and nuclear
translocation of NF-jB, and nitric oxide synthase
activity. 5-HT2B and 5-HT2C receptor selective ago-
nists were unable to repress TNF-a mediated inflam-
mation, demonstrating that the anti-inflammatory
effects were specific for 5-HT2A receptor activation.
Complete blockades of the effects of TNF-a were
observed when (R)-DOI was added to cells simultan-
eously with TNF-a, and (R)-DOI was also effective in
significantly attenuating TNF-a induced inflammation
when added several hours after TNF-a stimulation.
These data suggested 5-HT2A receptor activation may
be a viable therapeutic strategy for persistent and
chronic inflammation, and not just a preventative
treatment (Pelletier & Siegel, 2009).

Although all psychedelics tested were anti-inflam-
matory, the super-potency of (R)-DOI was unex-
pected, because other structurally similar psychedelics
were orders of magnitude less potent. From a struc-
tural standpoint, (R)-DOI is a phenethylamine
(Nichols, 2012) and related to mescaline. Mescaline
naturally occurs in the peyote cactus (Lophophora wil-
liamsii), and was first isolated by the chemist Dr
Arthur Heffter in 1898 (Heffter, 1898). Not only has
peyote been consumed by Native North Americans
for millennia for religious ceremonies (Bruhn, De
Smet, El-Seedi, & Beck, 2002), it has also been shown
to activate several immune parameters (nitric oxide
and cytokine production in macrophages and lympho-
cyte proliferation) and directly kill tumour cells
(Franco-Molina et al., 2003). In the mid 20th century,
the mescaline structural template was used to develop
a series of hallucinogenic phenethylamines (Hey,
1947; Peretz, Smythies, & Gibson, 1955; Shulgin,
Sargent, & Naranjo, 1969). One of these, (R)-DOI,
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was found to selectively label 5-HT2 receptors in stud-
ies incorporating a radioactive iodine isotope
(Johnson, Hoffman, Nichols, & Mathis, 1987;
McKenna et al., 1989), and currently represents one
of the best tools for pharmacologists to study selective
activation of 5-HT2 receptors. Subjectively, the behav-
ioural effects of (R)-DOI in humans are similar to
those of LSD; however, the duration is significantly
longer (> 24 h vs �8 h), and there are reported differ-
ences in tactile body sensation (i.e. muscle tension,
nausea, etc.) (Shulgin, 1991).

Moving from in vitro to in vivo, Nau, Yu, Martin,
and Nichols (2013) investigated the effects of (R)-DOI
to block the effects of TNF-a in a live animal. For
these in vivo experiments, mice were intraperitoneally
injected with saline, TNF-a, or (R)-DOI 30min prior
to TNF-a. The highest dose of (R)-DOI administered,
0.3 mg/kg, represents the behavioural threshold of (R)-
DOI in C57BL/6J mice (the lowest dose necessary to
elicit a behavioural response) (Smith, Barrett, &
Sanders-Bush, 2003). After 5 h of treatment, tissues
and blood were removed for analysis by gene expres-
sion and protein assays. Anti-inflammatory effects
were found in several tissues, including the aortic
arch, intestine, and blood of the (R)-DOI treated ani-
mals. In these tissues, (R)-DOI blocked TNF-a
induced expression of ICAM-1, VCAM-1, cytokines
IL-6 and IL-1b, chemokines monocyte chemotactic
protein-1 (MCP-1), C-X3-C motif ligand 1 (Cx3Cll),
and increases in circulating IL-6. The 5-HT2A receptor
selective antagonist M100109 was used as a control
to demonstrate that the anti-inflammatory effects
were indeed mediated by selective activation of
5-HT2A receptors.

If serotonin acting at the 5-HT2A receptor is
primarily pro-inflammatory, as described in the his-
torical literature, why are psychedelics anti-inflamma-
tory at the same receptor? We hypothesize that the
anti-inflammatory effects of (R)-DOI and other psy-
chedelics may be partially explained by functional
selectivity. Functional selectivity is a concept where
different drugs induce different conformations of the
same receptor to recruit and activate different
effector pathways (Kenakin, 2011; Urban et al.,
2007). In this scenario, serotonin primarily stabilizes
the receptor in a conformation that recruits pro-
inflammatory pathways, whereas psychedelics stabil-
ize the receptor in a slightly different conformation
that recruits anti-inflammatory signalling pathways.
This would also explain why certain antagonists at
the receptor also have been shown to have anti-
inflammatory properties, because they would be

preventing the effects of serotonin itself to promote
inflammation. Although the precise molecular mech-
anisms remain to be elucidated, we hypothesize that
5-HT2A receptor activation with psychedelics leads to
a functionally selective recruitment of anti-inflamma-
tory effector pathways that lead to disruption of
either activation of or downstream signalling from
TNF-a receptors and targets like NF-jB.

5-HT2A receptors and asthma

Asthma is an inflammatory disorder characterized by
varying degrees of airflow obstruction, airway hyper-
responsiveness (AHR), mucus over-production, and
bronchial inflammation (Busse & Lemanske, 2001).
The inflammation developed in asthmatic lungs stems
from an aberrant expansion of inflammatory cells
such as eosinophils, mast cells, and activated T-helper
lymphocytes (Hamid & Tulic, 2009). These cells pro-
duce pro-inflammatory factors such as cytokines, che-
mokines, growth factors, lipid mediators,
immunoglobins, and histamine, which ultimately con-
tribute to remodelling of the airways (Barnes, 2011;
Deckers, Branco Madeira, & Hammad, 2013). 5-HT2A

mRNA is expressed at elevated levels in numerous
immune related cell types that contribute to the
pathophysiology of inflammation (Stefulj et al., 2000)
and asthma that include CD4þ T-cells, alveolar mac-
rophages, eosinophils, and lung epithelial and bron-
chial smooth muscle cells (Kang et al., 2013; Leon-
Ponte, Ahern, & O’Connell, 2007; Mikulski et al.,
2010). An example of the role of 5-HT2A receptors in
these processes is that migration of eosinophils to the
lung depends on 5-HT2A receptor activation in eosi-
nophils. Therefore, asthma was an attractive disorder
to test the efficacy of (R)-DOI, for which there was a
robust animal model.

Multiple models of murine allergic airways disease
exist, with most involving the repeated exposure of
the animal to some allergen (usually either chicken
egg albumin [OVA] or house dust mite antigen) fol-
lowed by an analysis of airway structural remodelling
and lung function, inflammatory cell infiltration,
mucus production, and inflammatory mediator
expression (Locke, Royce, Wainewright, Samuel, &
Tang, 2007). OVA treatment in mice (sensitization
with systemic OVA to induce an IgE response, and
then exposure to inhaled OVA to induce an allergic
reaction in the lung, Figure 1) recapitulates several
hallmark symptoms of human allergic asthma includ-
ing pulmonary inflammation, AHR, mucus over-pro-
duction, and eosinophilia. Consistent with the
previously observed potencies of (R)-DOI to prevent
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inflammation, nasally-administered (R)-DOI at doses
as low as 0.01mg/kg completely prevents AHR,
eosinophilia, and pulmonary inflammation (Nau et al.,
2015). Significantly, this dose is far below what is
necessary to elicit a behavioural response. We have
found that several other psychedelic compounds also
prevent the development of asthma, indicating that
this property is not unique to (R)-DOI (unpublished
data). Gene expression analysis revealed that only
some pro-inflammatory cytokines were suppressed by
(R)-DOI treatment and included gm-csf, Il5, and Il13
(Nau et al., 2015). Other cytokines previously impli-
cated in the pathophysiology of asthma, like Il4, were
not. Flow cytometry of dissociated lung cells showed
that (R)-DOI also reduced Th2 cell recruitment and
polarization in the treated animals compared to sham
treated asthmatic mice (Nau et al., 2015).

Current asthma therapies include b2-adrenergic
receptor agonists, which simply induce smooth muscle
relaxation and bronchodilation, and glucocorticoids,
which bluntly repress the entire immune system and
are ineffective in a significant sub-set of patients
(Booth et al., 1995; Chung & Wenzel, 2014; Godfrey
et al., 1995; Hekking et al., 2015; Jeffery et al., 1992).
Although newer biologics like benralizumab are com-
ing to the market, which are antibodies specific to
either a cytokine or its receptor, they are very expen-
sive, require infusion in the clinic, and are only
approved for more treatment resistant severe forms
of asthma (Darveaux & Busse, 2015; Quirce,

Phillips-Angles, Dominguez-Ortega, & Barranco,
2017). Therefore, (R)-DOI and/or other psychedelics
potentially represent a new class of disease-modifying,
steroid sparing, small molecule therapeutics for the
treatment of asthma.

Conclusion

Psychedelics produce a potent blockade of the inflam-
mation produced by TNF-a in cell and animal models
of inflammation. Because of TNF-a’s controversial
role in asthma (Nakae et al., 2007) and (R)-DOI’s
impact on numerous factors contributing to the dif-
ferentiation of multiple immune cells (Kim, DeKruyff,
& Umetsu, 2010; Moreira & Hogaboam, 2011), we
believe that the effects of 5-HT2A receptor activation
likely extend far beyond the mere blockade of TNF-a
signalling. Given the select nature by which (R)-DOI
only blocks sub-sets of pro-inflammatory mediator
expression, psychedelics may modulate histone modi-
fications and epigenetic signalling for their therapeutic
effects. In asthma, an interplay between the acetyl-
ation and deacetylation states of histones in inflam-
matory genes has been well documented (Adcock,
Tsaprouni, Bhavsar, & Ito, 2007; Cosio et al., 2004;
Gunawardhana, Gibson, Simpson, Powell, & Baines,
2014; K. Ito et al., 2002). Furthermore, histone deace-
tylase (HDAC) inhibitors have been shown to reduce
eosinophilic inflammation and AHR in mouse models
of asthma (Choi et al., 2005; Ren et al., 2016). It is

Figure 1. (R)-DOI administration in a mouse acute asthma model. Mice are first intranasally exposed to nebulized (R)-DOI. (R)-DOI
at dosages that are orders of magnitude below those necessary to elicit a behavioural response produce full therapeutic efficacy.
Following a period of 30min, which allows for full 5-HT2A receptor activation, the animals are exposed to aerosolized ovalbumin.
Histological analysis reveals that animals treated with (R)-DOI prior to OVA exposure exhibit normal airways morphology, whereas
untreated animals exposed to OVA have thickened airways with peribronchial inflammation and a significant degree of mucus-cell
infiltration (pink staining). The strength of (R)-DOI as an anti-inflammatory agent can be further illustrated via techniques using
forced ventillation and whole-body plethysmography (WBP) to monitor pulmonary mechanics, flow cytometry for cellular analysis,
and qRT-PCR for cytokine and chemokine expression.
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certainly plausible that 5-HT2A receptor activation
modulates histone acetylation and methylation pat-
terns to promote the expression of anti-inflammatory
genes and repress the expression of pro-inflammatory
genes. Only recently has it been established that
5-HT2A receptor activity can alter epigenetic factors
(Holloway & Gonzalez-Maeso, 2015).

The remaining questions regarding psychedelics
and inflammation include: do 5-HT2A agonists have
more pronounced effects in some cell types more
than others (i.e. do the anti-inflammatory effects
manifest themselves more strongly in macrophages
than eosinophils or Th2 cells)? Does 5-HT2A receptor
activation modulate differentiation of immune-related
cells to more anti-inflammatory phenotypes? What
are the effects of chronic administration of a 5-HT2A

agonist in peripheral tissues to treat immune-related
disorders? Aside from these purely mechanistic ques-
tions, it is tempting to speculate on the nature of
5-HT2A receptor activation in other inflammatory dis-
orders. Because 5-HT2A receptor activation impacts
the expression of several key inflammatory mediators
(Figure 2) and the variety of effects we have observed
in animal models of inflammation, we believe that

psychedelics may be of therapeutic value to a wide
range of inflammatory disorders in humans. With
regard to therapeutic aspects of psychiatric disorders
like depression, putative suppression of neuroinflam-
mation by psychedelics may play a key role in the
long-term stability of the reported anti-depressant
effects after a single treatment. Another putative
component may be stimulation of neurogenesis.
For example, the psychotropic ingredient of the
Amazonian tea ayahuasca (Morales-Garc�ıa et al.,
2017) can stimulate hippocampal neurogenesis, which
has been shown to reduce depression-like behaviours
(Hill, Sahay, & Hen, 2015). Although the use of
sub-behavioural levels of psychedelics remains to be
validated as an effective therapeutic strategy for
inflammation in humans, the data from cellular and
animal models is promising, and these agents repre-
sent small molecule, highly bioavailable, inexpensive,
and steroid sparing treatments for inflammatory-
related diseases like asthma, atherosclerosis, inflamma-
tory bowel disease, and rheumatoid arthritis. One
possible barrier to the development of psychedelics
for use in the clinic is that the majority are scheduled
and controlled substances in the United States and

Figure 2. 5-HT2A receptor activation represses the expression of inflammatory mediators in multiple tissues. Mice treated with (R)-
DOI have been shown to have suppressed cytokine and chemokine expression following TNF-a-stimulation (aortic arch, small intes-
tine) and ovalbumin challenge (lung). Intracellular adhesion molecule-1 (ICAM-1) is found on the surface of endothelial and
smooth muscle cells and contributes to the inflammatory response by promoting the adhesion of immune cells onto the endothe-
lial surface, allowing for their subsequent infiltration into peripheral tissues. Vascular cell adhesion molecule-1 is also found on the
surface of endothelial cells and serves as a scaffold for leukocyte migration via reactive oxygen species (ROS) and antioxidants.
TNF-a is a key mediator in the inflammatory response and activates numerous pro-inflammatory signal transduction pathways. IL-5
is a Th2-derived cytokine that promotes prolonged eosinophil survival. Granulocye-macrophage colony-stimulating factor (GM-CSF)
is secreted by macrophages and recruits immune cells (i.e. eosinophils) to inflammation sites and induces their differentiation to
pro-inflammatory phenotypes. Together the action of 5-HT2A agonists on these inflammatory markers indicate therapeutic value
for a number of disorders, including asthma, atherosclerosis, irritable bowel syndrome, rheumatoid arthritis, diabetes, and
even depression.
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several other countries. Nevertheless, drugs that acti-
vate the 5-HT2A receptor and that have been shown
to produce psychedelic effects in humans have been
FDA approved (e.g. lorcaserin). Although the results
we discuss here are promising, more research is
needed to fully unlock therapeutic potentials and to
discover molecular mechanisms underlying
their effects.
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